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Steady vibrations of unbounded elastic anisotropic media are considered in 
three dimensions in the general case of 21 elastic constants. The problem is 
posed of extracting a single solution, defined in the whole space, of a system 
of elliptic equations for the stationary part of the displacement. The asympt- 
otic of the ~darn~~l solution is investigated at inf~ty and radiation con- 
ditions are determined which go directly over into the Sommerfeld condi - 
tions when going over to isotropic media. A uniqueness theorem is formulat- 
ed for the inhomogeneous problem in unbounded domains. 

1, The investigation of steady vibrations of elastic anisotropic media in unbound- 
ed domains reduces to ~v~tigating a system of elliptic equations in the whole space 
Rn (n = 3) for the stationary part of the displacement. While correct formulations 
of the boundary value problems for elliptic equations in bounded regions has been 
studied well, correct formulations of the boundary value problem for equations in un- 
bounded domains are known to a very much lesser degree. This is related to the fact 
that in addition to conditions on the domain boundary, it is still necessary to give 
some conditions at infinity, where until recently, there was no answer to this question 
for the majority of types of hypoelliptic equations. 

The system of equations for the stationary part of the displacements in an elastic 
anisotropic medium belongs to the type of equations whose characteristic polynomial 
P (o) satisfies the following conditions: 

1”. P (a) has only real coefficients. 
2”. P (a) has real zeroes. 
We assume that the following condition is also satisfied (regular case). 
3”. grad P (a) # 0 at the real zeroes of P (a). 

It follows from the conditions listed that the real zeroes of the polynomial form 
several closed surfaces SI (ovals). 

The Helmholtz equation, for which Sommerfeld obtained the conditions at infin- 
ity (the Sommerfeld radiation conditions), belongs to the type of equations mentioned. 
In the case of isotropic media, the surfaces of the real zeroes of the characteristic 
equation possess spherical symmetry, and the sommerfeld conditions are the condi- 
tions at infinity. 

Hypoelliptic operators of a general hind satisfying the conditions 1’ - 3’ have 
recently been considered for the case n = 2 [l] and under an addi~onal condition 

for n& 2. 
4”. The total curvature of the surface of real zeroes Sr is different from 
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zero everywhere (the case of strictly convex surfaces 6’1) [l, 23, 
The hypoelliptic equations examined in [Z] are written in the form 

p P) u (5) = f (4 
(D = i- l(a/aq, . . ., a/ar,),z= (Xl, . . .) q)) 

where P (0) satisfies the conditions 1” - 4”. 
The point fur, . . ., u,d is denoted by o. 

The main result of this paper is that if a hy~e~p~c polynomial P ((I) satisfies 
conditions 1” - 4” and the conditions 

u (z) - o (++3ffi), Q (0, I)) ZL. (z) = 0 (,+-If/s) 

are satisfied at infinity, then the solution of the homogeneous equation 

P (D)u (5) = 0 
must be identically zero. 

(1.2) 

(1.3) 

Here Q (0, D) is a certain differential operator whose coefficients depend only 
on w (CO is the unit vector in the space z), which satisfies the following condi- 

tions at points on the surfaces St 

Q Iw, ~~~ WI = 0, Q IO, oTf (~41 # 0, 1-G I4 m (1.4) 
Here the upper and lower signs in the subscripts are selected depending on $2, 

where o+f (0) (a_’ (w)) denotes a point on St at which the normal to SI agrees 
with (is opposite to) the direction from o- It is shown in [2] that the Sommerfeld 
conditions have precisely such a nature. In the general case there is great arbitrari- 

ness in the selection of the operator Q (0, o) , But it turns out that two polynomials 

Q1 and Qe which vanish simultaneously, or are simultaneously different from zero 

at the points o.+r and o-r, extract the same solution of (1.1) by using conditions 

(1.2) and (1.4). 
The main purpose of this paper is to obtain specific conditions at infinity which 

will go over into the Sommerfeld radiation conditions in the limit case of isotropic 
media, and the formulation of a uniqueness theorem based on them, It will be shown 
that the conditions at infinity have the same nature as do (1.2) and (1.4). 

2. The equations of motion of elastic anisotropic media in the general case of 
21 elastic constant can be written in the form 

(2.1) 

The dependent variables up (p = 1, 2, 3) are Cartesian components of the 
elastic displacement vector, xq are Cartesian coordinates, t is the time, and 

cpqrs denotes the elastic constants apqrs divided by the density p. 
The summation over Q, z-, s is in conformity with the rules of tensor CalCUlUS. 

The constants aparr are bounded by conditions of positive definiteness of the 

elastic energy (epq are the strain components) 

2F = ~~~~a~~q&~a, Epq = &qp 

Let us consider the plane wave 
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UP = A&J (0.x - t) (2.2) 

substituting into (2, l), we obtain the solvability condition for the homogeneous 
system (2.1) in the form 

det Iv26,, - cpC+1*rs7 = 0 (2.3) 

Here e,=~r]6j, [q 1~~1, where u= l@l-” isthephasevelocity of 
plane wave propagation. 

The expression on the left in (2.3) is a characteristic polynomial of the system 

(2.1) of sixth order in 8,. Its real roots form three closed surfaces I: 1 (1 = 1, 2,3) 
in the space 81, es, es, which are branches of a sixth order algebraic surface, and 
are the geometric locus of the ends of vectors of the length vTi drawn from the 
origin. These surfaces are called slowness surfaces because of the inverse dependence 
of the vector length on the velocity. 

Let us number them so that vis (VJ) > us2 (7) > us’ (7). In the regular case, 
there is no equality sign, and the separate branches XI (ovals) of the surface 2 

have no common points. 
lf all the ovals Zr are convex, then the wave surfaces are also convex. The 

outer oval of the wave surface corresponds to the inner oval X, . Since X, is always 
convex, the outer wave front is also always convex. The remaining wave fronts can 
have a complex shape and contain acute-angled edges. Within a domain bounded by 
the outer wave front there are hence observed domains where the ~ndamental solution 
vanishes identically, this is the so-called lacuna, ln the spatial case n = 3 one of 
the lacunae is a domain bounded by the inner wave front. The fundamental solution 
is also identicalIy zero in the part of space in front of the outer wave front, and is 
also a lacuna in this sense. 

I. G. Petrovskii [3] established the necessary and sufficient conditions for the ex- 

istence of lacunae. These conditions depend on the topological properties of the sec- 
tion of the surface P (1, Or, . . ., 0,) = 0 corresponding to the linear hyperbolic 

equation 

executed by the plane 0.r + t = 0. The confirmation of these conditions, formulat- 

ed in terms of the homology of definite cycles on the surface P (1, Or, . . ., 0,) to 

zero, is an independent complex problem for the system (2.1) with n= 3. The 

problem is simplified radically for n = 2 as well as for fn = 3) in the particlar 

case when all the surfaces XI are convex. The lacunae for convex Xl with n = 3 

are just a domain bounded by the inner wave front, and the domain in front of the 

outer front, and the domains between the fronts cannot be lacunae 141. 

3. We shall be interested in solutions of the form 

UP = uPo(z) exp (--ic&) 

We obtain an elliptic system of equations 

(3.11 
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a% 
cm8 axpax, a + u2up* = 0 

from (1.1) for the stationary part of the displacements up0 . 
We shall henceforth ccnsider just the stationary part of the solution, where the 

zero subscript will be omitted. 

Let us consider a system of the form (3.2) with a right side fp (z) which is a 
certain finite function of the coordinates 

(3.3) 

and let us be interested in solutions of the system (3.3) defined in the whole space 

Rn, n = 3. From the physical viewpoint the right side fp (z) of the system (3.3) 
defines a system of distributed vibrations sources, given in a finite part of space. This 
system of sources should naturally define the displacement field uniquely in the whole 
space, where the displacements should tend to zero at infinity. At the same time it 

is known that the system of equations (3.3) of the Helmholtz equations type allows an 
infinite set of solutions if we limit ourselves just to the requirement that the solution 

decrease at infinity. This is related to the presence of an infinite set of solutions of 

the homogeneous system (3.2) decreasing at infinity. 
Before deter~~g the specific form of the condition at inanity such that the solu- 

tions of the homogeneous problem which satisfy them can only be identically zero, 
it is first necessary to study the asymptotic of the fundamental matrix of the system 

(3.2) at infinity, i. e. ) solutions of a system with a right side in the form of a delta 

function of the coordinate 
a% 

Cpqr8 axqax, r + a2up = - B,j8 (x) (3.4) 

Applying a generalized Fourier transform to both sides of (3.4), solving the system 
obtained for the Fourier transform, and then applying the inverse Fourier transform, 
we obtain the solution of the problem in the form 

u,j = (2n)-5 
5 

W@’ (s) exp fib-*41 ds 
p (4 

H 
(3.5) 

Here H is the appropriate Hermander ladder, which is a discontinuous set in four- 
dimensional space defined by real or, 02, us and the imaginary component tr. 

Its involvement is related to the need to emerge in the complex domain of at least one 
variable for the existence of the integral [l]. We take a hyperplane as H such that 

for fixed oz, os (--a~, < CT, < 00, -0o < (Js < cc) the appropriate section of 

H is a line in the plane s = ~1 + i~r parallel to the real or axis. 
The functions Ur,’ = Wpi (s) / P (s) are determined from the solution of the 

system 

(L - a2E) ui = Aj, Ai = (62, 6,j, S,j) 
tJj = (Vi?, u,j, U,j>> L = II O;IwppIl 
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Here P (s) is the characteristic polynomial, W,j = det M’, where Mj is 
the matrix being obtained upon replacement of the p, column of the matrix L - cc*E 
by the vecotor A3, E is the unit matrix, and 6,’ is the Kronecker symbol. 

4. Let us consider an arbitrary direction in space x defined by the unit vector 

0 =(01, ma, e& and we select the coordinates so that the ~1 axis would be 
in the direction of the vector cc. We rewrite (3.5) in the form 

(a* = (SI, u,, ~~1, 31 = al + W 

The denominator of the integrand vanishes on the surface s (consisting of three 

separate branches of Sr). Fixing os, os and integrating with respect to ol we 
obtain the following expression by using residue theory: 

i 
UPI =&r ss WPf (4 exp (md (jaads 

p’ 

(I1 
(6) 

-0D 

(4.2) 

where ai, as, a8 are related by the equation p (o) = 0, but P,;(a) # 0 
because of condition 3’, ul z (11. 

To estimate the asymptotic value of ur,’ as x1 + 00 we use the stationary 
phase principle [5,6]. According to this principle, only points on the surfaces of real 
zeroes of the characteristic equation in which the normal is parallel to the 51 axis 
introduce a contribution to the value of the integral asymptotically as Zi--+~. 
In the neighborhood of each such point Sr can be represented in the form 

a1 = alv + 11s k, (a, - o,? + ‘/z k&a, - u3d2+ . q . 

Here kz and k, are the principal curvatures taken positive (negative) in the 
case when the surface in the neighborhood of the point ok is convex (concave). It 

is assumed that ki & 0. The x2, x3 axes are selected to coincide with the 

directions of the principal curvatures. Letting .upVi denote the contribution of the 

point av I we obtain by the stationary phase principle [S] 

i u;v = -T@. 
@rPj (%J 
e3l (%I 

exp (iulvxl) :< 

fj ew [(i +-) (02 - %.v)2 2,. + (i +) (a3 - u3#xI] do&as 
-02 

Using the substitution oi - oiv = t exp [i (n/4) sgn c&], we have 

5 exp [~(-$)(u~-~~~)~~~] dOi = 2Ci 1 exp (- qi’t*) dt = C* 
--m 
ci = exp (i (n / 4) sgn qi), qi = kisl: x1 > 0, i = 2,3 

We finally obtain 
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i 
r&v = dn,, 

w,j ( ,sv) exp (iSiVZl) 
- 

1/l kzk, I “bl (5,) 
exp i $- 

[( ) 
(Sgn k2 + sgn k3) ] 

In order to obtain an asymptotic expression in the direction of the unit vector 0, 
it is sufficient to replace 51 by r-, the derivative with respect to (31 by the deri- 
vative of P (a) with respect to the direction w, crrV~i by the scalar product 

~v*Z of the vectors (criY, cr2V, crsr) and (51, z2, rs), the product k,k, by 
the Gaussian curvature k in the initial coordinate system . Taking into account that 
at the point at which the derivative of P ((T) is taken, the normal is parallel to W, 
we obtain 

(4.3) 

The summation is over all points 0~ of the surfaces sz where the normal is 
parallel to the vector 0. It is assumed that the Gaussian curvature k + 0 at all 
these points K = fi for k < 0 and grad P(O) is taken in the directions 
-J-W, K = +1 for k > 0 (the surface is convex) relative to &grad P. (The 
surfaces S l are surfaces of real zeroes in the space of wave numbers (TV (the vect- 

ors (3). The surfaces 2 1 considered above are also surfaces of real zeroes of the 
characteristic polynomial, but in the space of quantities inverse to the velocities--Bi). 

The expression c%. 0 is the projection of the wave vector (01% oav, osv) 
drawn from the origin to a point on the surface s where the normal is parallel to 

the unit vector o in the direction of the vector CO. The wave vector in an e&tic 

anisotropic medium is a homogeneous function of the first degree in the frequency ~2, 
therefore we can write 

(CTy’ 0) = acv(o). (4.4) 

Here cv (CO) is a quantity inverse to the ray velocity which is defined as the 
velocity at which a perturbation occurring at time t = 0 at the point z=o 

(from a concentrated pulse source, say) reaches the point (21, x2, xs) . In other 
words, the geometric locus of points which perturbations from a concentrated pulse 

source will reach at time t = 1 , will be wave surfaces. We henceforth use the 

notation 

k,(o) = acv(o) (4.5) 

Substituting (4.5) into (4.3) and taking account of the factor exp (- iat), we 
have as r-+00 

UP 
j = r-1 5 Tc3 (co) exp {ik, (0) [r - wv (w) tll + 0 (r-*) (4.6) 

where wv = Gi is the ray velocity in the direction of the vector CO. 

We see that the fundamental solution degenerates into a traveling divergent wave 
at infinity, where the isophase curves coincide with the wave fronts being propagated 
from the concentrated pulse source. A point with a given phase moves in the direct- 
ion of the vector o with the ray velocity. In the case of strictly convex surfaces of 

real zeroes of the characteristic polynomial, the asymptotic expansion obtained is 
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valid for any o. The total curvature at any point is positive. In the general case, 

surfaces of real zeroes can be convex or concave, depending on w, so that points 
(or entire curves) are observed on these surfaces where the curvature will vanish, The 
directions of the normals at these points determine the directions in physicalspace,oof the rays 

which pass through the angular points (reentrant points) on the fronts (wave surfaces). 

The discussion presented above is valid only for rays which do not pass through the 

angular points of the lacunae. 
Let us examine the case when one of the principal curvatures is zero. In particular 

this case includes all ~a~ve~a~y-~o~op~c media when sz are surfaces of revolu- 
tion. Directing x1 along the normal to the surface, and the z2, 2s axes so that 

k # 0, k, = 0, we have 

01 = 01, -I- (k I 2) (a2 - azc)” + hs(o3 - uge)3 + . . . (4.7) 

In this direction the asymptotic expansion for XI* 00 has the form [5] 

and, therefore, the wave amplitude decreases as I”-$1’ in the direction of the rim 

of an acute-angled edge on the wave surface. The component (ks f 2) (us - Crs,)’ 
should be retained in (4.7) to investigate the asymptotic in the neighborhood of these 
directions. 

5. Taking account of (4.5), we write (4.4) in the form 

i (a,,- a) - ii& (co) = 0 
The point 0~ = ((JIv, 02v, 03~) is a point on Sl 

lel to the vector w and directed to the same side, i. e. ) 
the left side of (5.1) by QI (co, (T), we will have 

Q [co, a:(a)l= 0, Q [co, of- Co)1 #O, 
if we take 

s 3 

(5.1) 
at which the normal is paral- 

the point a: (CO). Denoting 

E= 1, 2,3 

Q (0, u) = I-f li (u-o) - ikz (41 = gl Qr @-J, 4 
kl 

as the polynomial Q (0, IJ) considered above, 
Replacing the vector o by the differential vector D, we obtain 

The discussion presented permits formulation of a uniqr.mness theorem for the 
case when the surfaces of real zeroes ,~r of the characteristic polynomial P(o) 

are strictly convex. 

T h e o I e m 1. Let twice continuously differentiable functions up satisfy the 
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system of equations 

(5.9 

in all space a~ E Rn(n = 3) , and be representable in the form 

Upj E 0 (Yl), 
au . 

+ - ikj (w) upj = o (r-l), r + 60 

Then the functions up are identically zero. 
Isotropic media can be considered as a particular case of media of cubic symm- 

etry under the condition that the elastic constants are couuected by the relationship 

%I - %a = %,. The surfaces sr hence become spherical. Two surfaces coincide 
and we obtain 

._- 
ksfw)=kS(o)=a v -f-. B(of=a 

P 1/’ P - 
h+ 2p 

where h, p are the Lame coefficients. Conditions (5.3) go over into the Sommerfeld 
conditions, As in the case of the Sommerfeld conditions, we have 

f up2 I< Cr(l+) I 2 I aup1 
, - - ikl (a) apz ar I 

< Cr-WQl2 

by combining the writing of the conditions at infinity for the plane (n = 2) [7] and 
space (n = 3) cases. 

In the plane case p = I, 2, I = p, s [7], and iu the space case p = 1,2,3, 
1=1,2,3. Analogous conditions, but for converging waves, differ from (5.4) 

just by the sign in front of the factor ikl(o). 
Jn tie case of transversally isotropic media, a~symme~c vibrations are allowable, 

hence the conditions at infinity corresponding to diverging waves are written in the 
form (5.4) for n = 3, where p = 1, 2, 1 = p, s as in the plane case, and 

the functions kl (co) = hi (cp) d o not differ from those presented in [7] for the 

plane case (cp is an angle measured from the axis of symmetry). 

6. The results in Sect. 5 refer to the case of strictly convex surfaces Sr . The 
investigation presented above of the case when just one of the principal curvatures 
vanishes already shows the strong difference in behavior of the fundamental solution 
at infinity in directions coincident with the normal directions at inflection points of 
the surfaces Sr . Following [Z], we shall call the unit vector w nonsingular it the 

total curvature is not zero at all points of the surfaces Sr at which the normal is 

parallel to o , the total curvature does not equal zero. Let the coefficients of the 

polynomial Q (61, o) be defined only for nonsingular vectors o , where as before 

the polynomial Q (0, a) vanishes for nonsingular vectors o at points of St at which 
the normal to S, is not only parallel to, but also coincides with, o in direction, 
and Q (0, a) is not zero at points in which the normal direction is opposite to o. 
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The nonsingular vectors form an open set on the unit sphere. In the general case when 
the surfaces Sr satisfy just the first three conditions presented in Sect. 1, it is not 
possible to solve the problem of studying the asymptotic behavior of fundamental solu- 
tions entirely, however, a uniqueness theorem can be formulated fully be using cer- 
tain integral relations which the solution of the inhomogeneous problem should satisfy. 

By using the results in [2], it can be shown that the following is valid: 

T h e o r e m 2. If conditions I” - 3’ are satisfied, then for any finite fimct - 
ions fp (2) , the system (3.3) has a solution, which is moreover unique, belongs 
locally to L, and satisfies the conditions 

Iim R-1 
R*a, s 

l~p@)l~~~< 00 
RGaS2R 

lim R-1 
R-KS 

,kK I Q (0, @ up (3 I” f&c = 0 
‘) 

X&i? 

for any nonsingular cone K with apex at the origin, i. e. , a cone whose intersection 
with the unit sphere consists of non~ngular vectors. 

It is here necessary to take 

where the quantity N depends on u For cones formed by rays which do not inter- 
sect lacunae, N = 3. For cones comprised of rays which intersect lacunae, the 
number N is increased by the number of lacuna boundaries intersected by these rays 
(i. e., at an additional number of points on Sr at which the normals coincide with 
a). 
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